
[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

A New Tool of Surveillance for Discrete Event Systems
Mohamed Fri*1, Fouad Belmajdoub2

*1,2University of Sidi Mohamed Ben Abdellah, Faculty of Science and Technology, Laboratoire
Techniques Industrielles, Road Imouzzer B.P. 2202 Fez, Morocco

Mohamed.fri@usmba.ac.ma
Abstract

In this paper, we discuss the different types of faults for discrete event systems that lead to a system
malfunction, afterwards we illustrate the principle of control of discrete event systems, and at the end we present an
algorithm that controls the start and the end of each action intending to ensure that each step runs are in their
permitted time range, this algorithm is easy and effective to perform the proper functioning of discrete event
systems.

Keywords: Discrete Event System; Supervision; Surveillance; Defects

 Introduction
Discrete event systems (DES) are systems

with finite state space where transitions are driven by
discrete events (communication networks, database
systems, traffic networks, digital circuits and
manufacturing systems). A control theory of a
general class of discrete event systems was initiated
by Ramadge and Wonham [14]. Control-theoretic
concepts such as controllability and observability
have been formalized in the DES setting.

The diagnostic of industrial processes is a
scientific discipline that aims at the detection of
faults in industrial plants, their isolation, and finally
their identification. Its main task is the diagnosis of
process anomalies and faults in process components,
sensors and actuators. Early diagnosis of faults that
might occur in the supervised process renders it
possible to perform important preventing actions.
Moreover, it allows one to avoid heavy economic
losses involved in stopped production, the
replacement of elements and parts [16].

Discrete event systems (DES) formalisms
are largely applied in the industrial automation area,
in order to develop powerful methods to design
controllers and diagnostic algorithms. The scientific
community focused on proposing efficient DES
methods to design supervisory controllers, fault
tolerant controllers, as well as fault detection and
isolation algorithms [2, 5, 7, 10, 15]. In this context,
fault detection and diagnosis of DES received
considerable attention in the past years, motivated by
the practical need of ensuring the correct and safe
functioning of complex industrial systems. In
particular, in the industrial automation field, the

problem of representing systems in their ‘‘complexity
containment’’ under nominal and faulty situations is
crucial [16].

In this paper we present an algorithm which
controls the start and the end of each action intending
to ensure that each step runs in its time range permit,
this algorithm is effective and easy to perform the
proper functioning of discrete event systems.

The rest of this paper is organized as
follows: Section 2 provides a review of discrete event
systems. Section 3 presents terminologies and
references, and Section 4 presents signal and system
faults. Section 5 provides a review of permanent and
intermittent faults. Section 6 presents control-
monitoring module. Section 7 formulates our
algorithm, and finally, section 8 draws conclusions.

Discrete Event Systems

The discretization of calculations in a
computer has served as an inspiration to many
researchers. It was not long before people realized
that many systems (especially digital systems) could
be successfully modelled as Discrete Event Systems
(DES). Such systems are those where events
(changes of state) happen spontaneously, are
logically ordered relative to each other, and are not
tied to a continuous global time.

An example of a DES is the high-level
model of a vending machine. The machine has a
number of discrete states, defined by how many
articles are available inside the machine and how
many coins are inserted. A change of state happens

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

when a coin is inserted or when the machine delivers
an article. These changes of states are named
“events”. Some events can happen only in a given
state. For example, the machine will not deliver an
item if there are no goods loaded, or if the correct
amount of money is not inserted. Naturally, DES
models can be applied to much more complex
systems, such as manufacturing cells [13].

Discrete-Event Systems can be formally
modelled using many different approaches, ranging
from Petri nets to Markov chains, fuzzy matrixes
[10], and modal logic [12, 14]. However, the most
commonly used method is the representation through
automata, and for all practical purposes-Finite-State
Machines (FSM). Besides being a very intuitive
approach, this also allows for the application of
results from Automata Theory, which is a well-
studied area.

An FSM is a five-tuple G = (Σ, Q, δ, q0, Q f
), where Σ is a finite set of symbols (and is often
called the alphabet), Q is a finite set of states, δ is a
partial transition function Σ × Q → Q, q0, is the initial
state of the system, and Q f ⊆ Q, is a subset of the
states, which are defined to be “final” (a final state is
sometimes also referred to as a “marked state”). The
special “empty” symbol ɛ, which does not belong to
Σ, is used to denote the empty string (i.e., the string
of length zero). The notation Σ∗ stands for the set of
all strings of symbols from Σ and ɛ. The transition
function δ can be naturally extended to the partial
function δ’: Σ∗×Q → Q, where δ’ (σ, q) = δ (σ, q), for
all σ ∈ Σ and q ∈ Q and δ’(σs, q) = δ’(s, δ(σ, q)), for s
∈ Σ∗, σ ∈ Σ, and q ∈ Q.
Usually, δ’ is denoted by δ and is used instead of the
original transition function. An FSM can be
interpreted as a DES if states are considered to be
states of the system and transitions labeled with
symbols from Σ are considered to be events
happening in the system. Strings of symbols would
describe sequences of events.

The language L(G) is defined to be the set of
all possible sequences of events in the system. The
FSM G is said to generate L(G). The language
Lm(G) is defined to be the set of all sequences of
events which lead to a final state. The FSM G is said
to accept Lm(G). The generated language L(G) is
always a superset of Lm(G). More formally,

L(G) = {s | s ∈ Σ∗, δ(s, q0) is defined},
Lm(G) = {s | s ∈ Σ∗, δ(s, q0) is defined, δ(s, q0) ∈ Q
f},
and Lm(G) ⊆ L(G).

The prefix-closure of a language is defined
to be the set of all prefixes of strings in the language.

The empty string ɛ is a prefix of any string. For all
automata, prefix closing the generated language
produces a language equal to the generated language
itself. More formally,

L� = {s | s ∈ Σ∗, ∃t ∈ Σ∗, st ∈ L},L(G)������ = L(G).

A prefix-closed language is a language
which equals its prefix-closure. Prefix closure is an
important operation because it describes all the
possible partial behaviors of a DES. An example of a
DES is the simplified model of a customer at a store
Fig. 1.

Figure 1: DES model of customer in a store

The customer can enter the store, pick

something to buy, pay with cash or a credit card, and
leave at any time. Here Σ = {“enter”, “pick”, “pay-
cash”, “pay-cc”, “leave”}. The set of states is Q =
{q0, q1, q2, q3}. The transition function can be
determined from the diagram in Fig.1, e.g., δ (pick,
q1) = q2. The initial state is marked with q0. This state
is the only final state, as well (i.e., Q f = {q0}).
Examples of event sequences are “enter, leave” or
“enter, pick, pay cc”. The second sequence is not
“complete”-it does not belong to Lm. However, it
belongs to Lm����, since it is a prefix of the sequence
“enter, pick, pay cc, leave”, which is in Lm.

The examples presented here are very
simple, in such a way that anyone can easily imagine
the application of DESs in factory processes,
computer protocols, and other areas. This is why
scientists are increasingly becoming interested in the
DES paradigm.

Terminologies and References

This section presents some usual definitions
of important terminologies in the Supervision and
Control domain. There is no consensus about the
terminologies definition presented in this section.
Hence, the objective of the paper not to propose new
terminologies, instead, it presents definitions used to
describe ours researches. Different authors contribute
to this section, but a concentrate of definitions can be
found in [3] and [13].Control, monitoring and

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

supervision are first defined and then the definition of
other terms used in this paper is given.
Control: triggers the execution of a set of operations
by giving orders to the process actuators, which may
be:

• A set of operations corresponding to the
manufacturing sequence of the product.

• A set of operations executed in order to restore
the process functionality offered during normal
execution.

• Actions with a high priority level applied in
order to protect the shop workers and to prevent
catastrophic developments.

• Some checking, tuning or cleaning operations
executed in order to maintain the process in an
operational state.

This means that our definition of control includes
all the functions actually acting on the process.
Monitoring: collects data from the process and from
the controller, determines the actual state of the
controlled system and makes the inferences needed to
produce additional data (historic, diagnosis, etc.).
Monitoring is limited to data processing and has no
direct action on the models or on the process.
Supervision: computes and sets the parameters of the
control sequence to be executed according to the state
of the control system and to the state of the process.
This includes normal and abnormal operations.
During normal operation, supervision takes the
decisions to raise the indecision in the control system
(real-time scheduling, optimization, control sets and
switching from one control law to another). When a
process failure occurs, supervision takes all the
decisions necessary to allow the system to resume
normal operation (rescheduling, recovery actions,
emergency procedures, etc.). It should be noted that
supervision takes place in a hierarchical structure (of
at least two levels). At the lowest level only the
control and monitoring functions are generally
implemented, no real decisions have to be taken.
Fault: Action, voluntary or not, that does not take all
the specifications into account.
Defect: Difference between the actual value of a
parameter and its nominal value.
Error: Part of a model which does not exactly match
the specifications of the physical system. Logically,
an error is the consequence of a fault.
Latent error: The error is qualified as latent as long
as the erroneous part of the model has not been used.
After using the erroneous part of the model, the error
becomes effective.
Failure: Event characterizing a situation in which an
operation is not executed by a resource because its
state no longer corresponds to the nominal
specifications.

Breakdown state: State of a resource from which the
system cannot provide the specified service. This
state is the consequence of a failure.
Symptom: Event or data by which the detection
system identifies an abnormal process operation. The
symptom is the only information the monitoring
system knows at the detection step.
Recovery point: State reachable from the breakdown
state in which the system must be driven to resume
normal operation.
Recovery sequence: Set of ordered actions executed
to bring the process back from the breakdown state to
the recovery point.
According to these basic concepts, we can define the
elementary functions of the supervision and
monitoring system. Between brackets the letter M, S
or C indicates to which previously discussed group
(Monitoring, Supervision, and Control) the function
belongs.
Detection (M): determines the normality or
abnormality of the functioning system. Two classes
of abnormal operations are considered:

• The first includes situations in which basic
operating constraints of the process are
violated (collisions for instance).

• The second one groups together situations in
which the part routing (control law) is not
respected (fabrication delays for instance).

Follow (M): maintains the state space of the system,
it traces the events observed in the
control/supervision model to update the state of
system.
Diagnosis (M): looks for a causality link between the
observed symptom, the failure and its origin.
Classically, three sub-functions are distinguished:

• Localization determines the subsystem
responsible for the failure,

• Identification identifies the causes of the
failure,

• Explanation justifies the conclusions.
Prognosis (M): foresees the consequences of a
failure on the future operation of the system. The
consequences can be immediate (resource
unavailable) or induced (faulty parts in the
workshop).
Decision (S): determines the state that must be
reached to resume to normal operation, then
determines the sequence of corrective actions to be
performed to reach this state.
Recovery (C, S): acts both on the process by
changing the states of the resource or equipment and
on the control system by changing the control laws,
the part routing, etc. Three classes can be defined:

• Minor, only the control laws are adapted,
• Significant, other resources are reallocated,

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

• Major, reallocated resources need to be
prepared to execute the recovery.

Signal and System Faults

The kinds of faults which can occur in the
type of discrete event systems we consider include
the stuck-signal faults, and the system or equipment
faults.
Stuck-signal faults

These faults occur when any of the actuators
or sensors in the system, owing to mechanical,
electrical, or electromagnetic interference problems,
gets stuck in a particular position with its logic status
becoming either true or false permanently, until a
recovery occurs through a repair or a replacement.
When an actuator gets stuck in the on/off position
such fault signals are denoted by so(stuck
open)/sc(stuck closed) respectively; where the
associated fault events are denoted by soF/scF and
the recovery events by soR/scR, respectively. In the
tank system the filling tap t1 may be prone to a stuck
open fault signal denoted by t1so, with the fault event
denoted as t1soF and the recovery event denoted as
t1soR. When the fault event t1 soF occurs, filling will
continue to occur even after the command to switch
off the tap has been given, unless the fault recovery
event occurs.

When a sensor gets stuck in the up/dn(down)
position such fault signals are denoted by sup(stuck
up)/sdn(stuck dn) respectively; whereas the
associated fault events are denoted by supF/sdnF, and
the recovery events by supR/sdnR, respectively. The
tank system in Figure .3 has a level sensor n which
may be prone to a stuck up fault signal, denoted by
nsup.

This signal has two events: the fault event
nsupF, and the corresponding recovery event nsupR.
It should be noted that stuck-signal faults are a type
of output signals since they are dependent on values
of signals prone to stuck-signal faults.
Referring to Figure .2, it can be seen that of the m
output signals, m - q are fault signals.

Fig.2. Input-Output view of a discrete event system

System/equipment faults

Apart from faults of the signals there are
faults of systems and its components. Certain fault
signals such as equipment failures, power
disruptions, system software crashes, etc., affect the
entire system. These can occur spontaneously in the
system depending only on their flown values, not
those of any other signal in the system. They are thus
independent variables and form part of the inputs to
the system.

In the tank system of Figure .3, a leakage
fault signal, which causes the fluid levels to drop in
the tank, is an example of a system/equipment fault.
The events of the leakage fault are leakageF and
leakageR, denoting leakage fault and recovery from
leakage events.

It should be noted that system faults are a
type of input signals since they are independent of
values of other signals. Referring to Figure .2, it can
be seen that of the n input signals, n - s are fault
signals.

Fig.3. Tank system schematic

Permanent and Intermittent Faults

Another categorization of faults arises from
the manner in which faults are reset after they occur.
Permanent faults

If the recovery event occurs only due to a re-
pair/replacement of the fault, then the fault is
regarded as a permanent fault.

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

Intermittent faults
If the recovery event can occur either

spontaneously or through repair/replacement, then
the fault is regarded as an intermittent fault. Example
is a loose wire that makes and breaks contact
spontaneously.

It is important to distinguish between these
two types of faults, since the intermittent fault
spontaneous recovery events, which tend to be
uncontrollable and unobservable, may the system to
oscillate between non-faulty and fault states.
Permanent faults, on the other hand, are associated
with recovery events (repair/replacement) which are
controllable and observable, and the system cannot
spontaneously move from a fault state to a non-fault
one.

Control-Monitoring Module

Rapid technological advances in computer
science have offered a wide range of possibilities to
design control architectures. There are many basic
architecture propositions, but centralized, hierarchical
and "heterarchical" (as well as bionic, holonic,
fractal, etc.) are the most commonly accepted. In this
paper, we will use the term heterarchical to indicate
an architecture that does not have the same
characteristics as centralized or hierarchical
architecture. The heterarchical architecture is adopted
in order to pursue full local autonomy in which the
global information is minimized or eliminated. This
implies that:

1. External higher levels of control can change
according to the activity to be coordinated. In
this case one module can compose, for instance,
two different hierarchical structures.

2. The communication between entities will not,
necessarily, have a master/slave relationship, for
example, they can co-operate, negotiate or
dynamically change roles from master to slave
and vice-versa.

3. We can introduce a new entity or modify the
existing ones without significant structural
changes.

These flexibilities introduced by the
heterarchical architecture imply a more complex
relationship between modules, risking failure
situations hardly detected during the design process.
We observe too that these flexibilities increase the
difficulty of solving failure situations if their origins
are not local, as the modules often do not know to
where the faulty treatment functions must be
propagated. This second problem does not exist
either in hierarchical nor in centralized architecture,
thus, no other reference, as far as the authors know,
takes into account that new situation. Part of our

contribution is to prevent that situation including
local information about the modules' relationship.

This research is based on the modular
organization presented in [15], called Control-
Monitoring architecture. In their approach only
resource failures are taken into account. The control
and monitoring system is considered error free. When
a resource failure occurs, the corrective actions to be
executed are performed according to the activity state
(function in execution, resource used, kind of
manufactured products and production strategy
specified by the user). Failure processing is not
limited to the classical sequence (detection,
diagnosis, decision and recovery).

The Acquisition/Routing block manages all
these functions, as shown in figure .4. This block is
based on an algorithm, which directs incoming
messages to the most suitable functions, according to
the nature of the data and the state of the monitoring
system. Moreover, this algorithm maintains the state
of this model and triggers the suitable monitoring,
control and/or supervision functions [15].

Figure .4: A generic module for control, supervision and

monitoring

Two complementary tools are used to
specify this approach. Petri nets with Objects are
used for modeling control, recovery and emergency
sequences and failure treatment. An extended entity
relationship model provides a process representation
(called Information System) in which data, which is
not easy to model by means of Petri nets (time
notions, histories, data flow, etc.) can be found.

In a sense, our research considers the topics
pointed out previously to build a systematic
procedure for distributing a centralized model of
supervision and control. It is based on the Petri nets
(PN), as described in [17], and shows the advantage
that each part of the control process has, at least, the
same properties as the whole model and at most all
good properties (boundedness, liveness, home state).

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

This procedure is founded on linear PN invariants
theory and the results of applying it is a set of sub-
models, each one describing the behavior of one
resource (or a set of them) and its interactions with
other resources. Some sub-models have redundant
information about the systems, because the relation
between resources must be represented in all entities
that use its services. The method is detailed in the
following sections.

Algorithm

Each system has a role played in the form of
a cycle that repeats steadily and containing several
steps, the total time of the cycle is called the
execution time and each step is intended in a well-
defined time interval. If any of these steps exceeds
the stated period thing that may be caused by the
malfunction of one of the sensors or actuators or a
work accident...etc. Then it will be a duty to
intervene to correct the problem. For this reason, we
thought to develop an algorithm to check whether
each step respects the execution time. This concept is
formalized and generalized in the following
algorithm:

1. Public class surveillance {
2. Public static void main (arg[] stag)
3. {Long θ, t, α;
4. Date θ[] = θ[N-1];
5. Boolean I[] =I[N-1];
6. Date tmax[] = tmax[N-1];
7. Boolean O[] =O[N-1];
8. For (int I; i<N; i++)
9. { while (t≤ θ[i])
10. { if (Ii==1) continue T1; }
11. pro=1;
12. T1: α= θ[i] – t;
13. for (int j=I; j<N;j++)
14. { tmax [j] = tmax [i]-α; }
15. While (t<=tmax)
16. {if (O[i] ==1) continue T2;}
17. prob=1;
18. T2: α= tmax[i] – t;
19. for (j=i+1; j<N; j++)
20. { θ[j] = θ[j]- α; }}}}

To implement our algorithm, we must

measure or compute the time interval for each step,
this time interval contains the time of normal
operation and the safety time. The latter is required in
case of change of the unauthorized load or the
environment and the amortization of the system ...
etc. The safety time is not always used (or required),
in other words there are steps that do not use this time
or benefit only from one part.

After performing the measurements for each
step, we define the start time earlier tmin(i) the start
time later θ(i) and the end time later tmax(i) .

In our algorithm waiting for the action (i)
should start before the start time later θi. Information
of beginning action (i) is given by the input variable
I(i):

If I(i) = 1 before time θ(i) , we deduce a
value α(α= θ(i) - t) which represents the difference
between the start time later step(i) and real time of
the step(i) beginning.

After subtracting the value of α from all start
time later θ(j) values of all steps having not yet run.
If the clock t value exceeds the θ(j) and Ii is not yet
activated our algorithm enforce output "prob" to "1".
This will shut down the system or trigger an alarm
according to the choice of the user.

After verifying of the step (i) had a good
start in the expected range we verify thereafter the
end time later for this step.

If O(i) = 1 before time tmax, we deduce a
value α (α = tmax(i) - t) which represents the
difference between the start time later step(i) and real
time of the step (i) start.

After subtracting the value of α from all end
time later tmax(j) values of all steps having not yet
run.

If the clock t value exceeds the tmax(i) and
O(i) is not yet activated our algorithm enforce output
"prob" to "1". This will shut down the system or
trigger an alarm according to the choice of the user.

Characteristics of surveillance methods based model

There are several methods of surveillance
based model in the literature. These methods are
based on a model of normal behavior and/or failed
system.

The actual observation of the current state of
the system, about surveillance, is compared with the
estimated by the model to detect a fault condition.
Our surveillance methods ensure the following:
. The surveillance system is easy to implement
. The surveillance system detect defects at the earliest
possible time
. The surveillance system is achievable in real time
. The surveillance system is conceivable
algorithmically

Conclusion

The technological evolution of real systems
and in particular control systems has greatly
facilitated the monitoring tasks performed to ensure
maximum efficiency of operation.
In this paper, we have brought a constructive
contribution to this technology by focusing our study

[FRI, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1221-1227]

on the preparation and presentation of an algorithm
that allow the use and operation of sequential
systems.
This algorithm discussed and studied in this phase
has a positive impact on the efficiency and
effectiveness of discrete event systems and especially
the systems of control when monitoring spots
sequential action.

References

[1] Ashvin Radiya, G. Robert Sargent, “A logic-
based foundation of discrete event modeling
and simulation”, ACM Transactions on
Modeling and Computer Simulation ‘4(1),
pp: 3–51, January 1994.

[2] C.G. Cassandras, S. Lafortune,
“Introduction to discrete event systems (2nd
ed.)”, New York, NY, USA: Springer, 2008.

[3] M. Combacau, P. Berruet Charbonnaud, A.
Khatab, E. Zamai, “Supervision and
monitoring of production systems”, in:
Proc. MCPL'2000, Grenoble, july 2000

[4] M. Combacau, E. Zama, A. Chaillet-Subias,
“Monitoring Strategies as Control Structure
of Monitoring Architectures Based on
Discrete Event Systems”, Computational
Engineering in System Applications,
Nabeul-Hammamet, Tunisia, April1998

[5] M. Dotoli, M.P. Fanti, A.M. Mangini, W.
Ukovich, “On-line fault detection of discrete
event systems by Petri nets and integer
linear programming”, Automatica ‘45, pp:
2665–2672, 2009.

[6] Feng Lin, Hao Ying, “Modeling and control
of fuzzy discrete event systems”, IEEE
Transactions on Systems, Man, and
Cybernetics, Part B ‘32(4), pp: 408–415,
August 2002.

[7] C.N. Hadjicostis, “Finite-state machine
embed dings for non-concurrent error
detection and identification”, IEEE
Transactions on Automatic Control ‘50(2),
pp: 142–153, 2005.

[8] K. Patan, “Artificial Neural Networks for
the Modelling and Fault Diagnosis of
Technical Processes”, Springer Pub, 2008.

[9] J. C. Laprie “Dependability basic concepts
and terminologies”, Springer Verlag
edition, ISBN: 82296-8, 1992.

[10] J. Lunze, “Fault diagnosis of discretely
controlled continuous systems by means of
discrete-event models”, Discrete Event
Dynamic Systems: Theory and Applications
‘18(2), pp: 181–210, 2008.

[11] P. J. Ramadge, W. M. Wonham, “The
control of discrete event systems”,
Inproceedings of the IEEE, Vol. 77, pp: 81-
98, January 1989.

[12] P.J. Ramadge and W.M. Wonham,
“Supervisory control of a class of discrete-
event systems”, SIAM Journal on Control
and Optimization ’25, pp: 206–230, 1987.

[13] S. C. Lauzon, A. K. L. Ma, J. K. Mills, B.
Benhabib, “Application of discrete-event
system theory to flexible manufacturing”,
IEEE Control Systems Magazine ‘16(1),
pp:41–48, February 1996.

[14] S. L. Ricker and K. Rudie, “Know means no:
Incorporating knowledge into discrete-event
control systems”, IEEE Transactions on
Automatic Control ‘45(9), pp:1656–1668,
September 2000.

[15] M.Sampath, R. Sengupta, S. Lafortune, K.
Sinnamohideen, D. Teneketzis,
“Diagnosability of discrete-event systems”,
IEEE Transactions Automatic Control ‘40,
pp: 1555–1575, 1995.

[16] A. Tilli, A. Paoli “Rule-based compos able
modelling of industrial automation
automata under nominal and faulty
conditions. In: Proceedings of seventh IFAC
symposium on fault detection, supervision
and safety of technical processes,
Barcelona, Spain, 30June 3 July, 2009

[17] R. Valette, B. Pradin-Ch zalviel, F. Girault
“An introduction to Petri net theory”.
Fuzziness in Petri nets Eds , 1999.

